
ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 254
Research Publish Journals

New Inverted Lists-Multiple String Patterns

Matching Algorithm

Chouvalit Khancome
1
, Veera Boonjing

2

1
Department of Computer Science, Ramkhamhaeng University, Bangkok, Thailand.

2
International College, King Monkut‟s Institute of Technology at Ladkrabang, Ladkrabang, Bangkok, 10520,

Thailand.

Abstract: Multiple string pattern matching is one of the most important fundamental in solving string processing.

This principle simultaneously searches for all patterns appeared in a large given text. A new algorithm to this

problem called “IVL-MSPM” is presented. The new solution adapted the “inverted lists”(shown in [39]) for

accommodating the collection of patterns. The experimental results showed that the proposed data structures were

constructed faster and more economic on space than the well known data structures: Trie, Reverted-Trie, and

Suffix tree. The searching results were faster than the traditional algorithms especially small number of patterns

and small text sizes.

Keywords: Multiple Pattern String Matching, String Patterns Matching, Inverted Lists, String Processing, Static

Dictionary Matching.

I. INTRODUCTION

Multiple string pattern matching principle, which is often derived from single string pattern matching, simultaneously

searches for all occurrences of patterns P={p
1
,p

2
,..,p

r
} appeared in a given text T={t1,t2,t3…tn} over a finite alphabet .

Several fields in computer science employed this principle to solve their problems. For instances, the operating system

commands used the classic algorithms to embed in their command sets e.g., Unix grep command using Commentz-Walter

[3] and agrep using Wu-Manber[23]. Including the intrusion detection systems used the famous algorithms to implement

such as SNORT system using Aho-Corasick[1], Commentz-Walter [3], and Wu-Manber[23]), SetHorspool [9], and so on.

Even though this principle is viewed as the classic fundamental, the current issues are still interested in new aspects of

solutions. For example, the new solutions, which are shown in [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],

[36], [37], and [38], are the related multiple string matching algorithms that are always provided the new ideas and the

new ways to improve the previous algorithms. Traditionally, Trie, Reverted-Trie, and Suffix tree are the data structures

adopted for algorithms. However, these data structures take a large space and hard to implement. Then, the new data

structure, which is easier to construct and more economic on space, is required.

This research article provides the new data structure that takes less space, easy to create, and faster search. The main

contribution of this article is a new algorithm of multiple string pattern matching using the inverted lists (Inverted Lists-

Multiple String Patterns Matching: IVL-MSPM). This solution takes O(|P|) time and O(| |+|P|) space for preprocessing

phase where | | is the alphabet size. As well as, the searching phase takes O(n+locc) time where n is the length of the

given text, and locc is the number of the matched characters that includes the mismatched time.

Experiments showed that the processing time were compared with well known structures: Trie, Reverted-Trie, and Suffix

tree. The results illustrated that the inverted lists structure was constructed faster and was more economic on space than

the structures to be compared. Furthermore, the searching time were significantly faster than Aho-Corasick[1] and

SetHorspool[9] in the cases of a small number of patterns.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 255
Research Publish Journals

The rest of this article is organized as follows. Section 2 indicates the related researches. Section 3 shows the basic

definitions and the details of inverted lists construction. Section 4 presents the proposed search algorithm. Section 5

shows the experimental results to compare the processing times, the memory usages, and the searching results. Sect ion 6

is the conclusion.

II. RELATED RESEARCHES

Traditionally, many data structures for multiple pattern string matching algorithms were directly derived from the

principle of single string matching (employing Trie, Bit-parallel, Hashing table, and the combined data structures).

The first Trie-based algorithm, which scans the given text from the left to the right, is the Aho-Corasick [1]. This

algorithm was derived from the KMP [7] to create the AC Trie for storing the patterns. Obviously, it takes a linear time

for searching in a given text. The second algorithm introduced by Commentz-Walter [3] and it was inherited from the

single matching of BM [4] to create the reverted Trie for accommodating patterns P. This algorithm scans the text T by

the suffix approach (i.e., scanning the text from the right to the left of searching window) in sub-linear time. The third one

is the SetHorspool algorithm [9] called the easy version of Commentz-Walter [3]. The algorithm employed the reverted

Trie and the shift table to store the patterns. Other solutions [18], [19], MultiBDM[20], SBOM[5], SDBM[9], [15], and

[11] improved the Trie for decreasing the searching time, but they are more complex in worst case scenario and inefficient

in searching (shown in [9]).

Based on Bit-parallel, the single Shift-Or and the single Shift-And were applied to the Multiple Shift-And [8] and the

Multiple BNDM[9], and [10] (shown by Navarov [9]). These are restricted by the computer word architectures.

The first hashing idea was presented by Karp and Rabin [14] in the single string matching, but it took the worst case as

the simplest way of searching. Then Wu and Manber [23] presented the algorithm by creating the block of pattern and

implementing the hashing table to store the patterns. The solution of [25] improves the Wu and Manber[23] for saving the

searching time, but the worst case scenario is not improved.

The other ideas (e.g., [16], [17] and [24]) combine several structures to improve the time complexity such as q-gram [16]

and the partitioning technique [17], but the exhaustive worst case still remains. With the evident, the algorithms, which

based on Trie, are more efficient than the others. There are the valuable literature reviews provided in [9], [24], and [16].

In a part few years, solutions [28]-[30] improved Trie structure to accommodate the patterns especially [29] shown

minimal space of solution. Other solutions, which employed those classic data structures (e.g., Trie, Bit-parallel and

Hashing), can be found in [27], [32], [33].

III. INVERTED LISTS STRUCTURE

The new algorithm of dynamic dictionary matching using the inverted lists structure [39] accommodated the dynamic

patterns in a linear-time. This article derived that structure to store the multiple string patterns. Therefore, some

definitions and some algorithms are similar to [39] in this section.

Let p
i
 be the pattern in P, and p

i
 contains the string {c1,c2,…,cm} where ri 1 . Let be a finite alphabet cover P and

T, and let be any characters which . The following sub-sections show how to create the inverted lists structure,

which are divided to the basic definitions and the pre-processing phase.

A. Basic Definitions:

The posting lists are the pairs of indices between all characters in and their positions in P. The individual posting lists

are grouped to the new form called the inverted lists. The following definitions examine their details.

Definition 1 Let P={p
1
, p

2
, p

3
,…, p

r
} be a set of patterns where p

i
 is the individual pattern i

th
 of m character {c1c2c3…cm}

and ri 1 .

Definition 2 Every character ck in P can be represented as an individual of posting list as follows.

1. If k<m a character ck is ck:<k:0:i> and denoted by ik
0 , or

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 256
Research Publish Journals

2. if k=m a character ck is ck:<k:1:i> and denoted denoted by ik
1 , where mk 1 .

Definition 3 Let lmax be the maximum length of patterns in P, and be the position of the same character appeared in

the various patterns in P where max1 l and . The posting lists of are { i0 , l0 ,…, p0 , q0
} or { i1 ,

l1 ,…, p1 , q1 } where rqpli },,...,,{1 . 0, represents { i0 , l0 ,…, p0 , q0 }, and 1, represents { i1 , l1

,…, p1 , q1 }.

Definition 4 The inverted list (i.e., IVL) of alphabet occurring 0, is defined as
0,

I or
1,

I occurring 1, .

Definition 5 The hashing table provided to store
0,

I and/or
1,

I is called the inverted lists table and denoted as .

Definition 6 The temporary space provided for any inverted lists
0,

I and/or
1,

I is called the SET.

B. Inverted Lists for Multiple String Patterns:

The inverted lists construction is begun by each character in P to be read and generated to the data structure. Before

generating, the empty table will be created for all alphabets of . For putting the inverted lists to , if the pattern has

already filled in the table, only the number of pattern is added to the corresponding inverted lists. Otherwise, the new

inverted list will be created and added into the table. The algorithm proceeds as described below.

Algorithm 1 Pre-processing phase

Input: P={p
1
, p

2
,…, p

r
}

Output: table of P

1. Create empty table and add all characters

2. For i=1 To r Do

3. For j=1 to m of p
i
 Do

4. If does not exist ij
0 or ij

1 Then

5. add ij
0 if j<m or ij

1 if j=m into the first Level of

6. Else

7.

add i into the second level of (
0,)(jjcharI if j<m or

1,)(jjcharI if j=m)

8. End of If

9. End of For

10. End of For

11. Return

Example 1 Adding the inverted lists of P={aab,aabc, aade} to .

The table is created from line 1, and each pattern is read one by one from line 2 to line 10. In this case, line 2 will be

processed to read the pattern p
1
 to p

3
. Each round of line 3 will be repeated to equal the length of each pattern p

i
. From

example 1, the inverted list a:<1:0:{1}>, <2:0:{1}>, and b:<3:1:{1}> are built from p
1
=aab, and every inverted list is

put into . In the next loop of line 2, we consider a:<1:0{2}>, <2:0:{2}> of p
2
=aabc and put only the number of pattern

by line 4 and line 5, respectively. The results are a:<1:0:{1,2}> and <2:0:{1,2}>. The inverted lists of „b‟ and „c‟ are

new inverted lists which are generated into the table as a first round. In the last round, the characters „a‟ of p
3
=aade are

processed as the second round, but the inverted list of „d‟ and „e‟ are generated as the new inverted list. All inverted lists

are scattered to the table (e.g., shown in table 1).

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 257
Research Publish Journals

Example 2 Implementation of individual inverted lists from P={aab,aabc, aade} to .

Firstly, all individual posting lists are grouped by the form of character : position :{set of number of patterns}. Therefore,

all individual posting lists above can be grouped to the new form below.

a: <1:0:1>,<1:0:2>,

 <2:0:1>,<2:0:2>,

 <3:0:1>,<3:0:2>,

b: <1:1:3>,<2:0:3>,

c: <2:1:4>,

d: <3:0:3>,

e: <3:1:4>.

A general outlook of inverted lists in such a hashing table is demonstrated in figure 1.

Fig. 1 implementing of the perfect hashing table

Before complexity analysis, algorithm 1 is referred for proof of how to access the inverted lists table, and Lemma 1 and

Theorem 1 show these proofs.

Lemma 1 To access
0,

I or
1,

I takes O(1) time where
0,

I and
1,

I are the inverted lists of in .

Proof Each alphabet is a unique character in . Thus, it is a unique character, and it has only one key to access the

inverted list groups in . The table is implemented by the hash table; hence, each operation to retrieve
0,

I or
1,

I

takes one time. By the hashing properties, each operation takes O(1) time. Therefore, to access
0,

I or
1,

I takes only

O(1) time.

Theorem 1 The time complexity for generating P to the inverted lists takes O(|P|) time where |P| is the sum of all patterns

length in P.

Proof Given |P| be the sum of lengths of {p
1
, p2, p3, …, p

r
}. All length of patterns are denoted by |p

1
|, |p

2
|, |p

3
|,…, |p

r
|.

For the initial step, the table is built in O(1) time. As soon as the table is built completely, every pattern is scanned

by the loop of line 2 in r rounds. Each round of line 2 stimulates line 3 into operation. Each execution of line 3 equals the

length of each pattern. This step takes the processing time as |p
1
|+ |p

2
|+ |p

3
|+…+|p

r
|=|P|, and it reaches to the hypothesis

step by the last character of p
r
. Therefore the inverted lists construction takes |P| time. This leads to O(|P|) time

complexity; meanwhile, line 4, line 5, and line 7 access the table in O(1) by Lemma 1. Hence, the pre-processing time

is proved by O(|P|) time.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 258
Research Publish Journals

The table contains the alphabet over a finite alphabet . The inverted lists of are
0,

I and
1,

I which are

stored in the second column. The space depends on the number of and the posting lists in
0,

I or
1,

I , which takes

O(| |+|P|) space for accommodating the inverted lists of P.

Theorem 2 The table requires O(| |+|P|) space for accommodating the whole inverted lists of P where |P| is the sum

lengths of patterns in P, and is the inverted lists table.

Proof All patterns in P contain the various strings over with the size | | where . The hypothesis is that all

characters are generated to inverted lists and added into the table with |P| space. Given the length of P be |p
1
|, |p

2
|, |p

3
|,

…, |p
r
|, each p

i
 contains the string of characters {c1c2c3…cm} where ri 1 . The length of this string is denoted by |p

i
|.

For the initial step, the first column of table is created with | | size. If equals , then the maximum space also

equals | | space. As the initial step, both cases lead to O(| |) or O(| |) space. Each inverted list is created by the

preprocessing phase for all patterns such that each inverted list of string {c1c2c3…cm} in each p
i
 takes one space per one

posting list. Thus the sum of space equals |p
1
|+|p

2
|+|p

3
|+…+|p

r
|=|P|. Therefore, the overall space is O(| |+|P|) space.

IV. PROPOSED SEARCHING ALGORITHM

The search employs the variables „N‟, „SHIFT‟, „pos‟ and „n‟ to propel the searching window where „N‟ is the target

position in the text, „SHIFT‟ is the initial position of the next searching window, „pos‟ is the required position of inverted

lists to be matched, and „n‟ is the length of the text T. In addition, „SET1‟ and „SET2‟ are the temporary variables used to

operate the continuity and the matching during the searching execution.

In initial searching, the variables N and SHIFT are initiated to enforce the searching window, and the variable „pos‟ is

used to control the required position in the text T. Afterwards, the text is scanned and searched from the left to the right.

While scanning, we look for the inverted lists in , and the positions are equal „pos‟ at the row of by text[N] storing

to SET1 or SET2. Algorithm 2 illustrates this methodology.

Algorithm 2: IVL-MSPM

Input : P ={p
1
, p

2
 p

3
,. . . ,p

r
}() and T = t1t2t3 . . . tn

Output : all occurrences are reported, and T is scanned.

1. N=1, SHIFT=2, pos=1, SET1=SET2={}, RESULTS={}

2. While N <= n and SHIFT <= n Do

3. If pos = 1 Then

4. SET1← τ (text[N], 1)

5. Else

6. SET2← τ (text[N], pos)

7. End of If

8. SET1 ← SET1 ∩ SET2

9. Store the matched position to RESULTS if SET1 contains φ(N
pos

),1

10 If SET1<>{} Then

11. N++ and pos++

12. Else

13. N = SHIFT, SHIFT ++ and pos = 1

14. End of If

15. End of While

16. Return RESULTS

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 259
Research Publish Journals

With careful attention to Algorithm 3, the special function is INTERSECTION(). This function considers the position in

SET1 and SET2 and searches for the matched positions and returns the continuity of inverted lists into SET1 for the next

comparison. The intersection function can be efficiently implemented through a simple procedure indicated as follows.

Algorithm 3 INTERSECTION (SET1, SET2, N, pos)

1. Report the successful matching at N if IVL in SET2 containing)(
1

pos

2. Add every IVL in SET2 that are continued (i.e.,)(
0

pos) from SET1 to TEMP

3. Return TEMP

Every comparison takes the inverted lists from the table to the sub-hash variable SET1 or SET2. Whenever the inverted

lists are taken, the INTERSECTION is invoked to operate the continuity and occurrence of patterns. For instance, if

SET1={<1:0:{1,2}>} and SET2={<2:0: {1,3}>} operate, then the intersection is ordered by the positions 1 to 2 between

SET1 and SET2. In this case, the first consideration is by the sequence of inverted lists in SET1 which are described by

SET2. Thus, the pattern number {1} in SET1 is described by position {1} in SET2, while the required position is „2‟ in

{<2:0:{1,3}>}. If the inverted lists are considered, the indicated number „0‟ and „1‟ are also considered, and the

occurrence is reported if the indicated number is „1‟. Consequently, the indicated number of SET2 is {<2:0:{1,3}>},

which is not the last character of the pattern: it does not match at this position. Therefore, the result is SET1={<2:0:{1}>}.

Lemma 2 The time complexity to take
0,

I and/or
1,

I from SET uses O(1).

Proof Because the SET contains only one row of inverted lists; hence, the inverted lists in the SET can be taken only once

which implies O(1) time.

As shown above, the intersection between SET1 and SET2 finds a set of numbers in SET2 that continue from SET1.

Importantly, this method reports the matched position whenever the terminate status equals 1. The continuity is

concentrated on the posting lists in SET1 described by SET2. If the numbers of positing lists in SET2 are superior to SET1

one position, they are kept to SET1 for the next operation.

Lemma 3 The intersection between SET1 and SET2 takes O(1) time.

Proof Let SET1 and SET2 be the instances of SET. SET1 contains the inverted list groups
0,1

I and/or
1,1

I , and SET2

contains the inverted list
0,2

I and /or
1,2

I . Then every operation of SET can be solved by Lemma 2 in O(1) time.

Hence, every operation to access
0,1

I ,
1,1

I ,
0,2

I and
1,2

I takes O(1) time by Lemma 1.

Theorem 3. Searching for all occurrences of patterns in P={p
1
, p

2
, p

3
,..,p

r
} which occur in the text T={t1t2t3…tn} takes

O(n+locc) time where n is the length of T, and locc is the numbers of matched characters, which includes the

mismatched time.

Proof. The hypothesis is that all characters of t1t2t3…tn are scanned, and all matched patterns are reported. The initial step

takes O(1) time by line 1. The time complexity is dominated by the variables SHIFT, N, SET1, and SET2, and these

following cases give an explanation of the time complexity.

In the first case, loop while is run from t1 to tn. All operations are dominated by the variable N and SHIFT, and the

variable SHIFT orders to inspect all characters in the text T. It can be said that line 3 takes O(n) time because this step is

processed from the initial step to n times.

In the second case, the variable N drives line 4 and line 6 to operate in locc time at most. Each domination of N drives line

4 and line 6 to take O(1) time by Lemma 1. This stimulates line 10 to equal locc time as well. However, each operation of

line 8 takes O(1) time by Lemma 3. The variable N orders the loop and returns to line 3, and at most equals the number of

the characters to be matched with the inverted lists in the table . This takes locc time. Line 3 and line 10 take a constant

time to control the other steps. Thus, the hypothesis is reached by line 13 and line 6, and the searching time is computed

in O(n+locc) time.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 260
Research Publish Journals

V. EXPERIMENTAL RESULTS

A. Hardware:

The experiments were performed on a Dell Vostro 3400 notebook with Intel(R) CORE(TM) i5 CPU, M 560 @2.67 GHz,

4 GB of RAM, and running on Windows 7 Professional (32-bits) as an application machine. All programs were

implemented in Java with JavaTM 2 SDK, Standard Edition Version 1.6.22 built in the Netbeans 6.9.1.

B. Data:

The | | was 52 letters of English alphabets; „A‟ to „Z‟ and „a‟ to „z‟. Each pattern was randomized with the various

lengths of 3 to 20 characters (on average 12 characters). The programs randomized the patterns of 10, 50, 100, 500, 1,000,

5,000, 10,000, 50, 000, 100,000, and 300,000 for testing the data structure construction, and the patterns of 10, 20, 30, 40,

50, 60, 70, 80, 90, 100, 500, 1,000, 10,000, 50, 000, 100,000, and 300,000 were also randomized for the searching tests.

The texts were randomized from the by the size of 1 KB, 10 KB, 100 KB, 1 MB, 5 MB, and 10 MB. Each

experiment was performed 10 times and the average was given.

C. Preprocessing Results:

In preprocessing phase, the inverted lists structure was constructed faster and used smaller space than the earlier Aho-

Corasick [1] and SetHorspool in [9] for all cases. In case of pattern numbers more than 1,000; the suffix tree could not

create the structure (represented by „-‟) because the computer was out of heap memory in java while generating the

structure. As well as, AC-Trie and RT-Trie were similar to suffix tree when using the pattern number 300,000. These

results are illustrated by Table 1 and Table 2, respectively.

TABLE I: PROCESSING TIMES FOR CREATING THE DATA STRUCTURES (SECONDS)

#patterns AC-Trie RT-Trie Suffix Tree IVL

10 0.149 0.110 0.144 0.029

50 0.152 0.224 0.245 0.123

100 0.398 0.423 0.546 0.257

500 0.592 0.732 20.273 0.362

1,000 1.152 1.786 807.374 0.843

5,000 9.543 7.992 - 5.437

10,000 44.321 19.842 - 6.549

50,000 501.432 109.421 - 41.732

100,000 3,491.732 5,648.945 - 840.153

300,000 - - - 1,076.432

TABLE II:MEMORY USAGES OF DATA STRUCTURES(KB)

#patterns AC-Trie RT-Trie Suffix Tree IVL

10 4.52 4.78 25.18 4.37

50 4.79 4.88 47.79 4.58

100 4.87 4.95 899.55 4.85

500 5.48 5.70 2,721.48 5.07

1,000 5.92 6.15 5,872.87 5.29

5,000 10.91 11.05 - 7.37

10,000 14.76 15.82 - 8.98

50,000 55.82 56.94 - 22.66

100,000 154.10 149.12 - 46.54

300,000 - - - 158.91

D. Searching Results:

The searching times were more efficient than the Aho-Corasick and the SetHorspool in the cases of 10, 20, 30, 40, 50, and

60 patterns for all comparable cases. For the number of pattern 70 to 90; the proposed algorithm took less time than the

SetHorspool but longer than the Aho-Corasick. Table 3 illustrates the searching times in the second unit.Table 4 shows

the larger scale of the experimental results when using the pattern number from 100 to 300,000 patterns. These results

showed the new algorithm was faster than the SetHorspool algorithm but slower than the Aho-Corasick algorithm.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 261
Research Publish Journals

TABLE III: Searching times (Seconds) when the pattern numbers 10-90 and the text sizes 1 KB to 5 MB

Text sizes #patterns Aho-

Corasick

SetHorspool IVL-MSPM

1 KB 10 0.0028 0.0197 0.0018

 20 0.0033 0.0457 0.0023

 30 0.0041 0.0570 0.0030

 40 0.0041 0.1787 0.0030

 50 0.0058 0.0900 0.0049

 60 0.0054 0.0966 0.0056

 70 0.0058 0.1091 0.0064

 80 0.0059 0.1097 0.0073

 90 0.0060 0.1962 0.0092

10 KB 10 0.1517 0.2711 0.0138

 20 0.0333 0.7285 0.0211

 30 0.0426 0.9014 0.0283

 40 0.0453 1.3333 0.0376

 50 0.0585 1.4188 0.0493

 60 0.0567 1.5479 0.0608

 70 0.0569 1.5830 0.0647

 80 0.0587 1.5174 0.0728

 90 0.0623 1.6631 0.0650

100 KB 10 0.3042 2.5075 0.0693

 20 0.3434 6.3085 0.2692

 30 0.4558 7.0720 0.3144

 40 0.4742 13.4095 0.3890

 50 0.6446 13.7770 0.5822

 60 0.6699 13.1947 0.6049

 70 0.6503 16.1672 0.6349

 80 0.6654 9.9408 0.8115

 90 0.7230 11.6783 0.9528

1 MB 10 3.2589 24.3629 1.4462

 20 3.6699 69.2808 2.2862

 30 4.5725 81.2985 3.4074

 40 4.7033 128.1007 4.2012

 50 6.1650 116.8468 5.3145

 60 6.3105 135.9463 5.6377

 70 6.2101 142.4764 5.9012

 80 6.7162 140.8990 7.0458

 90 7.3199 154.3418 9.9342

5 MB 10 15.2375 123.5881 7.2263

 20 17.7920 324.1327 12.5403

 30 22.0295 412.2096 12.8643

 40 22.1210 648.2799 20.0707

 50 27.2012 583.1193 26.1849

 60 30.1121 611.7581 27.0252

 70 31.3953 641.1439 33.5463

 80 32.2099 634.0454 34.2042

 90 31.9742 694.5383 45.5356

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 262
Research Publish Journals

TABLE IV: SEARCHING TIMES (SECONDS) WHEN THE PATTERN NUMBERS 100-300,000 AND THE TEXT SIZES 1 KB TO 10 MB

Text sizes #patterns Aho-Corasick SetHorspool IVL-MSPM

1 KB 100 0.019 0.122 0.060

 500 0.020 0.195 0.183

 1,000 0.037 0.207 0.203

 5,000 0.040 0.177 0.878

 10,000 0.030 0.162 0.943

 50,000 0.035 0.798 5.576

 100,000 0.037 0.802 7.683

 300,000 - - 8.872

10 KB 100 0.101 1.478 0.301

 500 0.117 1.532 0.732

 1,000 0.125 1.511 1.271

 5,000 0.173 1.572 4.575

 10,000 0.202 1.771 7.986

 50,000 0.549 2.011 10.942

 100,000 1.553 2.431 21.981

 300,000 - - 29.762

100 KB 100 0.492 12.842 3.671

 500 0.579 16.211 6.912

 1,000 0.599 17.192 8.841

 5,000 1.376 18.444 42.118

 10,000 1.432 18.976 62.127

 50,000 2.902 19.981 79.125

 100,000 4.177 25.211 221.421

 300,000 - - 244.772

1 MB 100 7.812 130.042 36.912

 500 8.942 149.721 45.414

 1,000 10.332 176.421 81.464

 5,000 20.842 181.123 127.166

 10,000 45.762 188.284 245.593

 50,000 78.421 217.125 788.541

 100,000 102.184 307.190 842.428

 300,000 - - 942.112

5 MB 100 29.199 759.178 566.315

 500 37.241 799.351 644.124

 1,000 43.442 858.324 755.311

 5,000 140.104 897.148 899.712

 10,000 167.123 907.518 902.814

 50,000 198.452 1,535.523 1,200.314

 100,000 397.671 1,976.434 1,488.619

 300,000 - - 1,684.971

10 MB 100 71.197 1,578.189 655.175

 500 88.812 1,768.557 751.324

 1,000 95.148 2,487.166 855.152

 5,000 299.182 2,555.190 991.412

 10,000 355.275 2,575.101 1,010.318

 50,000 430.723 2,642.342 1,401.714

 100,000 689.333 2,740.784 1,800.878

 300,000 - - 2,113.998

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 263
Research Publish Journals

VI. CONCLUSION

This research article presented a multiple string patterns matching algorithm using inverted lists represented by hashing

principle. This algorithm searches by the prefix approach taking (1) O(|P|) time and O(| |+|P|) space in preprocessing

phase where |P| is the sum of all pattern lengths in P, and (2) O(n+locc) time for searching where n is the length of input

text and locc is the number of the matched characters which includes the mismatched time. The experimental results

showed that the inverted lists structure is faster to construct and smaller space than the popular structure Trie. The

searching time results were faster in the cases of small pattern number.

REFERENCES

[1] V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibliographic search,” Comm. ACM, pp. 333-

340, 1975.

[2] Moffat, and J. Zobel, “Self-Indexing Inverted Files for Fast Text Retrieval,” ACM Transactions on Information

Systems, Vol. 14, No. 4, pp. 349-379, 1996.

[3] Commentz-Walter, “A string matching algorithm fast on the average,” In Proceedings of the Sixth International

Collogium on Automata Languagees and Programming. pp. 118-132, 1979.

[4] R.S. Boyer. and J.S. Moore, “A fast string searching algorithm,” Communications of the ACM. vol. 20, no.10, pp.

762-772, 1977.

[5] Allauzen and M. Raffinot, “Factor oracle of a set of words,” Technical report 99-11, Institute Gaspard Monge,

Universitĕde Marne-la-Valle, 1999.

[6] Monz and M. de Rijke, Inverted Index Construction http://staff.science.uva.nl/~christof/courses/

ir/transparencies/clean-w-05.pdf, February 2002.

[7] D.E. Knuth, J.H. Morris, V.R. Pratt, “Fast pattern matching in strings,” SIAM Journal on Computing, vol. 6, no.1,

pp. 323-350, 1997.

[8] G. Navarro, Improved approximate pattern matching on hypertext, Theoretical Computer Science, 237:455-463,

2000.

[9] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings, The Press Syndicate of The University of

Cambridge. 2002.

[10] H. HYYRO, K. F. SSON and G. NAVARRO, “Increased Bit-Parallelism for Approximate and Multiple String

Matching,” ACM Journal of Experimental Algorithms, vol.10, no. 2.6, pp. 1-27, 2005.

[11] J. J. Fan and K. Y. Su, “An efficient algorithm for match multiple patterns,” IEEE Transaction On Knowledge and

Data Engineering, vol.5, no. 2, pp.339-351, 1993.

[12] J. Zobel and A. Moffat, “Inverted Files Versus Signature Files for Text Indexing,” ACM Transaction on Database

Systems, Vol. 23, No. 4, pp. 453-490, 1998.

[13] J. Zobel and A. Moffat, “Inverted Files for Text Search Engines,” ACM Computing Surveys, vol. 38, no. 2, pp. 1-

56, 2006.

[14] K. M. Karp and M.O. Rabin, “Efficient randomized pattern-matching algorithms,” IBM Journal of Research and

Development, vol. 31, no. 2, pp. 249-260, 1987.

[15] L. Gongshen, L. Jianhua and L. Shenghong, “New multi-pattern matching algorithm,” Journal of Systems

Engineering and Electronics, vol. 17, no. 2, pp.437-442, 2006.

[16] L. Salmela, J. Tarhio and J. Kytöjoki, “Multipattern string matching with q-grams,” ACM Journal of Experimental

Algorithmics (JEA) , vol. 11, no. 1.1, pp. 1-19, 2006.

[17] L. Ping, T. Jian-Long, and L. Yan-Bing, “A partition-based efficient algorithm for large scale multiple-string

matching,” Proceeding of 12
th
 Symposium on String Processing and Information Retrieval (SPIRE‟05). Lecture

Notes in Computer Science, vol. 3772, Springer-Verlag, Berlin, 2005.

[18] M.Crochemore, A. Czumaj, L. Gąsieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter, “Fast practical

multi-pattern matching,” Rapport 93-3, Institute Gaspard Monge, Universityĕde Marne-la-Valle, 1993.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

Page | 264
Research Publish Journals

[19] M.Crochemore, A. Czumaj, L. Gsieniec, T. Lecroq, W. Plandowski, and W. Rytter, “Fast practical multi-pattern

matching,” Information Processing Letters, vol. 71, no.3/4, pp. 107-113, 1999.

[20] M. Raffinot, “On the multi backward dawg matching algorithm (MultiBDM),” In R. Baeza-Yates, editor,

Proceedings of the 4
th
 South American Workshop on String Processing, Valparaìso, Chile. Carleton University

Press, pp. 149-165, 1997.

[21] O. R. Zaïane, CMPUT 391: Inverted Index for Information Retrieval, University of Alberta. 2001.

[22] R. B. Yates and B. R. Neto, Mordern Information Retrieval, The ACM press.A Division of the Association for

Computing Machinery,Inc. 1999, pp. 191-227.

[23] S.Wu and U. Manber, “A fast algorithm for multi-pattern searching,” Report tr-94-17, Department of Computer

Science, University of Arizona, Tucson, AZ, 1994.

[24] S. T. Klein, R. Shalom and Y. Kaufman, “Searching for a set of correlated patterns,” Journal of Discrete

Algorithm, Elsevier, pp. 1-13, 2006.

[25] Y. D. hong, X. Ke and C. Yong, “An improved Wu-Manber multiple patterns matching algorithm,” Performance,

Computing, and Communications Conference, 2006. IPCCC 2006. 25
th
 IEEE International 10-12, pp. 675-680,

2006.

[26] Z. A.A Alqadi, M. Aqel and I. M.M. El Emary, “Multiple skip Multiple pattern matching algorithm (MSMPMA),”

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03, 2007.

[27] Y. Hu, P.-F. Wang, and K. Hwang, “A Fast Algorithm for Multi-String Matching Based on Automata

Optimization,” C2010 2nd International Conference on Future Computer and Communication, vol. 2, pp. 379–383,

2010.

[28] N. Askitis, and J. Zobel, “Redesigning the String Hash Table, Burst Trie, and BST to Exploit Cache,” ACM

Journal of Experimental Algorithmics, vol. 15 no. 1, article 1.7, pp. 1–61, 2011.

[29] Belazzougui, “Worst Case Efficient Single and Multiple String Matching in the RAM Model,” IWOCA 2010,

LNCS 6460, pp. 90–102, 2011.

[30] T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen, “Online Dictionary Matching with Variable-Length

Gaps”. SEA 2011, LNCS 6630, pp. 76–87, 2011.

[31] S. Kuruppu, B. Beresford-Smith, T. Conway, and J Zobel, “Iterative Dictionary Construction for Compression of

Large DNA Data Sets,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9 no. 1, pp.

137–149, 2012.

[32] H. J. Kim, H.-S. Kim, and S. Kang, “A Memory-Efficient Bit-Split Parallel String Matching Using Pattern

Dividing for Intrusion Detection Systems,” IEEE Transaction on Parallel and Distributed Systems, vol. 22 no. 11,

pp. 1904–1911, 2011.

[33] L. Dai, and Y. Xia, “A Lightweight Multiple String Matching Algorithm,” International Conference on Computer

Science and Information Technology 2008, pp. 611–615, 2008.

[34] Khancome and V. Boonjing. Data Structure for Dynamic Pattern. International MultiConference of Engineers and

Computer Scientists 2010, HK, 17-19 March 2010, Pp. 399-404.

[35] Daoudi, S.E. Oautik, A. El Kharraz, K. Idrissi, and D. Aboutajdine, “Vector Approximation based Indexing for

High-Dimensional Multimedia Database,” Engineering Letter, 16:2, EL_16_2_05, 2008.

[36] Y. Lu, and D. Lou, “An Algorithm to Find the Optimal Matching in Halin Graphs,” IAENG International Journal

of Computer Science, 34:2, IJCS_34_2_09, 2007.

[37] H. Mryajima, M. Fujisai, and N. Shigei, “Quantum Search Algorithms in Analog and Digital Models,” IAENG

International Journal of Computer Science, 39:2, IJCS_39_2_05, 2012.

[38] O. Guth, and B. Melichar, “Finite Automata Approach to Computing All Seeds of String with the Smallest

Hamming Distance,” IAENG International Journal of Computer Science, 36:2, IJCS_36_2_05, 2009.

[39] Khancome and V. Boonjing, “A new linear-time dynamic dictionary matching algorithm”, Computing and

Informatics, Vol. 32, 2013, 1001-1027, V 2013-Sep-30.

