New Inverted Lists-Multiple String Patterns Matching Algorithm

Chouvalit Khancome¹, Veera Boonjing²

¹Department of Computer Science, Ramkhamhaeng University, Bangkok, Thailand. ²International College, King Monkut's Institute of Technology at Ladkrabang, Ladkrabang, Bangkok, 10520,

Thailand.

Abstract: Multiple string pattern matching is one of the most important fundamental in solving string processing. This principle simultaneously searches for all patterns appeared in a large given text. A new algorithm to this problem called *"IVL-MSPM"* is presented. The new solution adapted the *"inverted lists"* (shown in [39]) for accommodating the collection of patterns. The experimental results showed that the proposed data structures were constructed faster and more economic on space than the well known data structures: Trie, Reverted-Trie, and Suffix tree. The searching results were faster than the traditional algorithms especially small number of patterns and small text sizes.

Keywords: Multiple Pattern String Matching, String Patterns Matching, Inverted Lists, String Processing, Static Dictionary Matching.

I. INTRODUCTION

Multiple string pattern matching principle, which is often derived from single string pattern matching, simultaneously searches for all occurrences of patterns $P = \{p^1, p^2, ..., p^r\}$ appeared in a given text $T = \{t_1, t_2, t_3, ..., t_n\}$ over a finite alphabet Σ . Several fields in computer science employed this principle to solve their problems. For instances, the operating system commands used the classic algorithms to embed in their command sets e.g., Unix *grep* command using Commentz-Walter [3] and *agrep* using Wu-Manber[23]. Including the intrusion detection systems used the famous algorithms to implement such as SNORT system using Aho-Corasick[1], Commentz-Walter [3], and Wu-Manber[23]), SetHorspool [9], and so on.

Even though this principle is viewed as the classic fundamental, the current issues are still interested in new aspects of solutions. For example, the new solutions, which are shown in [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], and [38], are the related multiple string matching algorithms that are always provided the new ideas and the new ways to improve the previous algorithms. Traditionally, Trie, Reverted-Trie, and Suffix tree are the data structures adopted for algorithms. However, these data structures take a large space and hard to implement. Then, the new data structure, which is easier to construct and more economic on space, is required.

This research article provides the new data structure that takes less space, easy to create, and faster search. The main contribution of this article is a new algorithm of multiple string pattern matching using the inverted lists (Inverted Lists-Multiple String Patterns Matching: *IVL-MSPM*). This solution takes O(/P/) time and $O(/\sum /+/P/)$ space for preprocessing phase where $|\sum |$ is the alphabet size. As well as, the searching phase takes O(n+locc) time where *n* is the length of the given text, and *locc* is the number of the matched characters that includes the mismatched time.

Experiments showed that the processing time were compared with well known structures: Trie, Reverted-Trie, and Suffix tree. The results illustrated that the inverted lists structure was constructed faster and was more economic on space than the structures to be compared. Furthermore, the searching time were significantly faster than Aho-Corasick[1] and SetHorspool[9] in the cases of a small number of patterns.

The rest of this article is organized as follows. Section 2 indicates the related researches. Section 3 shows the basic definitions and the details of inverted lists construction. Section 4 presents the proposed search algorithm. Section 5 shows the experimental results to compare the processing times, the memory usages, and the searching results. Section 6 is the conclusion.

II. RELATED RESEARCHES

Traditionally, many data structures for multiple pattern string matching algorithms were directly derived from the principle of single string matching (employing Trie, Bit-parallel, Hashing table, and the combined data structures).

The first Trie-based algorithm, which scans the given text from the left to the right, is the Aho-Corasick [1]. This algorithm was derived from the KMP [7] to create the AC Trie for storing the patterns. Obviously, it takes a linear time for searching in a given text. The second algorithm introduced by Commentz-Walter [3] and it was inherited from the single matching of BM [4] to create the reverted Trie for accommodating patterns P. This algorithm scans the text T by the suffix approach (i.e., scanning the text from the right to the left of searching window) in sub-linear time. The third one is the SetHorspool algorithm [9] called the easy version of Commentz-Walter [3]. The algorithm employed the reverted Trie and the shift table to store the patterns. Other solutions [18], [19], MultiBDM[20], SBOM[5], SDBM[9], [15], and [11] improved the Trie for decreasing the searching time, but they are more complex in worst case scenario and inefficient in searching (shown in [9]).

Based on Bit-parallel, the single Shift-Or and the single Shift-And were applied to the Multiple Shift-And [8] and the Multiple BNDM[9], and [10] (shown by Navarov [9]). These are restricted by the computer word architectures.

The first hashing idea was presented by Karp and Rabin [14] in the single string matching, but it took the worst case as the simplest way of searching. Then Wu and Manber [23] presented the algorithm by creating the block of pattern and implementing the hashing table to store the patterns. The solution of [25] improves the Wu and Manber[23] for saving the searching time, but the worst case scenario is not improved.

The other ideas (e.g., [16], [17] and [24]) combine several structures to improve the time complexity such as q-gram [16] and the partitioning technique [17], but the exhaustive worst case still remains. With the evident, the algorithms, which based on Trie, are more efficient than the others. There are the valuable literature reviews provided in [9], [24], and [16].

In a part few years, solutions [28]-[30] improved Trie structure to accommodate the patterns especially [29] shown minimal space of solution. Other solutions, which employed those classic data structures (e.g., Trie, Bit-parallel and Hashing), can be found in [27], [32], [33].

III. INVERTED LISTS STRUCTURE

The new algorithm of dynamic dictionary matching using the inverted lists structure [39] accommodated the dynamic patterns in a linear-time. This article derived that structure to store the multiple string patterns. Therefore, some definitions and some algorithms are similar to [39] in this section.

Let p^i be the pattern in P, and p^i contains the string $\{c_1, c_2, ..., c_m\}$ where $1 \le i \le r$. Let Σ be a finite alphabet cover P and T, and let λ be any characters which $\lambda \subseteq \Sigma$. The following sub-sections show how to create the inverted lists structure, which are divided to the basic definitions and the pre-processing phase.

A. Basic Definitions:

The posting lists are the pairs of indices between all characters in Σ and their positions in *P*. The individual posting lists are grouped to the new form called the inverted lists. The following definitions examine their details.

Definition 1 Let $P = \{p^1, p^2, p^3, ..., p^r\}$ be a set of patterns where p^i is the individual pattern i^{th} of *m* character $\{c_1c_2c_3...c_m\}$ and $1 \le i \le r$.

Definition 2 Every character c_k in *P* can be represented as an individual of posting list as follows.

1. If k < m a character c_k is $c_k :< k: 0: i >$ and denoted by $\varphi_0^{k_i}$, or

International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online) Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

2. if k=m a character c_k is $c_k: \langle k:1:i \rangle$ and denoted denoted by $\varphi_1^{k_i}$, where $1 \le k \le m$.

Definition 3 Let l_{max} be the maximum length of patterns in P, and ε be the position of the same character λ appeared in the various patterns in P where $1 \le \varepsilon \le l_{max}$ and $\lambda \subseteq \Sigma$. The posting lists of λ are { $\varphi_0^{\varepsilon_i}, \varphi_0^{\varepsilon_i}, \ldots, \varphi_0^{\varepsilon_p}, \varphi_0^{\varepsilon_q}$ } or { $\varphi_1^{\varepsilon_i}, \ldots, \varphi_1^{\varepsilon_p}, \varphi_1^{\varepsilon_q}, \varphi_1^{\varepsilon_q}$ } where $1 \le \{i, l, \ldots, p, q\} \le r$. $\lambda_{\varepsilon, 0}$ represents { $\varphi_0^{\varepsilon_i}, \varphi_0^{\varepsilon_i}, \ldots, \varphi_0^{\varepsilon_p}, \varphi_0^{\varepsilon_q}$ }, and $\lambda_{\varepsilon, 1}$ represents { $\varphi_1^{\varepsilon_i}, \varphi_1^{\varepsilon_i}, \ldots, \varphi_1^{\varepsilon_p}, \varphi_1^{\varepsilon_q}$ }.

Definition 4 The inverted list (i.e., IVL) of alphabet λ occurring $\lambda_{\varepsilon,0}$ is defined as $I_{\lambda_{\varepsilon,0}}$ or $I_{\lambda_{\varepsilon,1}}$ occurring $\lambda_{\varepsilon,1}$.

Definition 5 The hashing table provided to store $I_{\lambda_{\varepsilon,0}}$ and/or $I_{\lambda_{\varepsilon,1}}$ is called the inverted lists table and denoted as τ .

Definition 6 The temporary space provided for any inverted lists $I_{\lambda_{e,0}}$ and/or $I_{\lambda_{e,1}}$ is called the *SET*.

B. Inverted Lists for Multiple String Patterns:

The inverted lists construction is begun by each character in *P* to be read and generated to the data structure. Before generating, the empty table τ will be created for all alphabets of Σ . For putting the inverted lists to τ , if the pattern has already filled in the table, only the number of pattern is added to the corresponding inverted lists. Otherwise, the new inverted list will be created and added into the table. The algorithm proceeds as described below.

Algorithm 1 Pre-processing phase Input: $P = \{p^l, p^2, ..., p^r\}$ Output: table τ of P1. Create empty table τ and add all characters $\lambda \subseteq \Sigma$ 2. For i=1 To r Do 3. For j=1 to m of p^i Do 4. If τ does not exist $\varphi_0^{j_i}$ or $\varphi_1^{j_i}$ Then 5. add $\varphi_0^{j_i}$ if j < m or $\varphi_1^{j_i}$ if j=m into the first Level of τ 6. Else 7. add i into the second level of τ ($I_{char(j)_{j,0}}$ if j < m or $I_{char(j)_{j,1}}$ if j=m) 8. End of If 9. End of For 10. End of For

11. Return τ

Example 1 Adding the inverted lists of $P = \{aab, aabc, aade\}$ to τ .

The table τ is created from line 1, and each pattern is read one by one from line 2 to line 10. In this case, line 2 will be processed to read the pattern p^{1} to p^{3} . Each round of line 3 will be repeated to equal the length of each pattern p^{i} . From example 1, the inverted list $a:<1:0:\{1\}>, <2:0:\{1\}>, and <math>b:<3:1:\{1\}>$ are built from $p^{1}=aab$, and every inverted list is put into τ . In the next loop of line 2, we consider $a:<1:0\{2\}>, <2:0:\{2\}>$ of $p^{2}=aabc$ and put only the number of pattern by line 4 and line 5, respectively. The results are $a:<1:0:\{1,2\}>$ and $<2:0:\{1,2\}>$. The inverted lists of 'b' and 'c' are new inverted lists which are generated into the table τ as a first round. In the last round, the characters 'a' of $p^{3}=aade$ are processed as the second round, but the inverted list of 'd' and 'e' are generated as the new inverted list. All inverted lists are scattered to the table (e.g., shown in table 1).

Example 2 Implementation of individual inverted lists from $P = \{aab, aabc, aade\}$ to τ .

Firstly, all individual posting lists are grouped by the form of *character : position :{set of number of patterns}*. Therefore, all individual posting lists above can be grouped to the new form below.

a: <1:0:1>,<1:0:2>, <2:0:1>,<2:0:2>, <3:0:1>,<3:0:2>, b: <1:1:3>,<2:0:3>, c: <2:1:4>, d: <3:0:3>,

e: <*3*:*1*:*4*>.

A general outlook of inverted lists in such a hashing table is demonstrated in figure 1.

Fig. 1 implementing of the perfect hashing table au

Before complexity analysis, algorithm 1 is referred for proof of how to access the inverted lists table, and Lemma 1 and Theorem 1 show these proofs.

Lemma 1 To access $I_{\lambda_{c,0}}$ or $I_{\lambda_{c,1}}$ takes O(I) time where $I_{\lambda_{c,0}}$ and $I_{\lambda_{c,1}}$ are the inverted lists of λ in τ .

Proof Each alphabet λ is a unique character in Σ . Thus, it is a unique character, and it has only one key to access the inverted list groups in τ . The table τ is implemented by the hash table; hence, each operation to retrieve $I_{\lambda_{\varepsilon,0}}$ or $I_{\lambda_{\varepsilon,1}}$ takes one time. By the hashing properties, each operation takes O(1) time. Therefore, to access $I_{\lambda_{\varepsilon,0}}$ or $I_{\lambda_{\varepsilon,1}}$ takes only O(1) time. \Box

Theorem 1 The time complexity for generating *P* to the inverted lists takes O(|P|) time where |P| is the sum of all patterns length in *P*.

Proof Given |P| be the sum of lengths of $\{p^l, p2, p3, ..., p^r\}$. All length of patterns are denoted by $|p^l|, |p^2|, |p^3|, ..., |p^r|$. For the initial step, the table τ is built in O(1) time. As soon as the table τ is built completely, every pattern is scanned by the loop of line 2 in *r* rounds. Each round of line 2 stimulates line 3 into operation. Each execution of line 3 equals the length of each pattern. This step takes the processing time as $|p^l| + |p^2| + |p^3| + ... + |p^r| = |P|$, and it reaches to the hypothesis step by the last character of p^r . Therefore the inverted lists construction takes |P| time. This leads to O(|P|) time complexity; meanwhile, line 4, line 5, and line 7 access the table τ in O(1) by Lemma 1. Hence, the pre-processing time is proved by O(|P|) time. \Box

International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online) Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

The table τ contains the alphabet λ over a finite alphabet Σ . The inverted lists of λ are $I_{\lambda_{\varepsilon,0}}$ and $I_{\lambda_{\varepsilon,1}}$ which are stored in the second column. The space depends on the number of λ and the posting lists in $I_{\lambda_{\varepsilon,0}}$ or $I_{\lambda_{\varepsilon,1}}$, which takes

 $O(|\sum |+/P|)$ space for accommodating the inverted lists of *P*.

Theorem 2 The table τ requires O($|\Sigma| + |P|$) space for accommodating the whole inverted lists of *P* where |P| is the sum lengths of patterns in *P*, and τ is the inverted lists table.

Proof All patterns in *P* contain the various strings over λ with the size $|\lambda|$ where $\lambda \subseteq \Sigma$. The hypothesis is that all characters are generated to inverted lists and added into the table τ with |P| space. Given the length of *P* be $|p^{l}|, |p^{2}|, |p^{3}|, ..., |p^{r}|$, each p^{i} contains the string of characters $\{c_{1}c_{2}c_{3}...c_{m}\}$ where $1 \le i \le r$. The length of this string is denoted by $|p^{i}|$. For the initial step, the first column of table τ is created with $|\lambda|$ size. If λ equals Σ , then the maximum space also equals $|\Sigma|$ space. As the initial step, both cases lead to $O(|\lambda|)$ or $O(|\Sigma|)$ space. Each inverted list is created by the preprocessing phase for all patterns such that each inverted list of string $\{c_{1}c_{2}c_{3}...c_{m}\}$ in each p^{i} takes one space per one posting list. Thus the sum of space equals $|p^{l}| + |p^{2}| + |p^{3}| + ... + |p^{r}| = |P|$. Therefore, the overall space is $O(|\Sigma| + |P|)$ space. \Box

IV. PROPOSED SEARCHING ALGORITHM

The search employs the variables 'N', 'SHIFT', 'pos' and 'n' to propel the searching window where 'N' is the target position in the text, 'SHIFT' is the initial position of the next searching window, 'pos' is the required position of inverted lists to be matched, and 'n' is the length of the text T. In addition, 'SET1' and 'SET2' are the temporary variables used to operate the continuity and the matching during the searching execution.

In initial searching, the variables N and SHIFT are initiated to enforce the searching window, and the variable 'pos' is used to control the required position in the text T. Afterwards, the text is scanned and searched from the left to the right. While scanning, we look for the inverted lists in τ , and the positions are equal 'pos' at the row of λ by text[N] storing to SET1 or SET2. Algorithm 2 illustrates this methodology.

Algorithm 2: IVL-MSPM **Input** : $P = \{p^1, p^2, p^3, \dots, p^r\}(\tau)$ and $T = t_1 t_2 t_3 \dots t_n$ **Output** : all occurrences are reported, and T is scanned. 1. *N*=1, *SHIFT*=2, *pos*=1, *SET1*=*SET2*={}, *RESULTS*={} 2. While $N \le n$ and SHIFT $\le n$ Do 3. If pos = 1 Then 4. SET1 $\leftarrow \tau$ (text/N], 1) 5. Else 6. $SET2 \leftarrow \tau$ (text[N], pos) 7. End of If 8. SET1 \leftarrow SET1 \cap SET2 9. Store the matched position to *RESULTS* if *SET1* contains $\varphi(N^{pos})$, 1 10 If *SET1*<>{} Then 11. N++ and pos++ 12. Else 13. N = SHIFT, SHIFT ++ and pos = 114. End of If 15. End of While 16. Return RESULTS

With careful attention to Algorithm 3, the special function is $INTERSECTION(\cap)$. This function considers the position in *SET1* and *SET2* and searches for the matched positions and returns the continuity of inverted lists into *SET1* for the next comparison. The intersection function can be efficiently implemented through a simple procedure indicated as follows.

Algorithm 3 INTERSECTION (SET1, SET2, N, pos)

1. Report the successful matching at N if *IVL* in SET2 containing $\varphi_1^{(pos)}$

2. Add every *IVL* in *SET2* that are continued (i.e., $\varphi_0^{(pos)}$) from *SET1* to *TEMP*

3. Return TEMP

Every comparison takes the inverted lists from the table τ to the sub-hash variable *SET1* or *SET2*. Whenever the inverted lists are taken, the *INTERSECTION* is invoked to operate the continuity and occurrence of patterns. For instance, if $SET1 = \{<1:0:\{1,2\}>\}$ and $SET2 = \{<2:0:\{1,3\}>\}$ operate, then the intersection is ordered by the positions 1 to 2 between *SET1* and *SET2*. In this case, the first consideration is by the sequence of inverted lists in *SET1* which are described by *SET2*. Thus, the pattern number $\{1\}$ in *SET1* is described by position $\{1\}$ in *SET2*, while the required position is '2' in $\{<2:0:\{1,3\}>\}$. If the inverted lists are considered, the indicated number '0' and '1' are also considered, and the occurrence is reported if the indicated number is '1'. Consequently, the indicated number of *SET2* is $\{<2:0:\{1,3\}>\}$, which is not the last character of the pattern: it does not match at this position. Therefore, the result is $SET1=\{<2:0:\{1,3\}>\}$.

Lemma 2 The time complexity to take $I_{\lambda_{\varepsilon_0}}$ and/or $I_{\lambda_{\varepsilon_1}}$ from SET uses O(1).

Proof Because the *SET* contains only one row of inverted lists; hence, the inverted lists in the *SET* can be taken only once which implies O(1) time. \Box

As shown above, the intersection between *SET1* and *SET2* finds a set of numbers in *SET2* that continue from *SET1*. Importantly, this method reports the matched position whenever the terminate status equals 1. The continuity is concentrated on the posting lists in *SET1* described by *SET2*. If the numbers of positing lists in *SET2* are superior to *SET1* one position, they are kept to *SET1* for the next operation.

Lemma 3 The intersection between SET1 and SET2 takes O(1) time.

Proof Let SET1 and SET2 be the instances of SET. SET1 contains the inverted list groups $I_{\lambda_{e1,0}}$ and/or $I_{\lambda_{e1,1}}$, and SET2

contains the inverted list $I_{\lambda_{c2,0}}$ and /or $I_{\lambda_{c2,1}}$. Then every operation of SET can be solved by Lemma 2 in O(1) time.

Hence, every operation to access $I_{\lambda_{\varepsilon_{1,0}}}, I_{\lambda_{\varepsilon_{1,1}}}, I_{\lambda_{\varepsilon_{2,0}}}$ and $I_{\lambda_{\varepsilon_{2,1}}}$ takes O(1) time by Lemma 1.

Theorem 3. Searching for all occurrences of patterns in $P = \{p^1, p^2, p^3, ..., p^r\}$ which occur in the text $T = \{t_1 t_2 t_3 ... t_n\}$ takes O(n+locc) time where *n* is the length of *T*, and *locc* is the numbers of matched characters, which includes the mismatched time.

Proof. The hypothesis is that all characters of $t_1t_2t_3...t_n$ are scanned, and all matched patterns are reported. The initial step takes O(1) time by line 1. The time complexity is dominated by the variables *SHIFT*, *N*, *SET1*, and *SET2*, and these following cases give an explanation of the time complexity.

In the first case, loop *while* is run from t_1 to t_n . All operations are dominated by the variable *N* and *SHIFT*, and the variable *SHIFT* orders to inspect all characters in the text *T*. It can be said that line 3 takes O(n) time because this step is processed from the initial step to *n* times.

In the second case, the variable *N* drives line 4 and line 6 to operate in *locc* time at most. Each domination of *N* drives line 4 and line 6 to take O(1) time by Lemma 1. This stimulates line 10 to equal *locc* time as well. However, each operation of line 8 takes O(1) time by Lemma 3. The variable *N* orders the loop and returns to line 3, and at most equals the number of the characters to be matched with the inverted lists in the table τ . This takes *locc* time. Line 3 and line 10 take a constant time to control the other steps. Thus, the hypothesis is reached by line 13 and line 6, and the searching time is computed in O(n+locc) time.

V. EXPERIMENTAL RESULTS

A. Hardware:

The experiments were performed on a Dell Vostro 3400 notebook with Intel(R) CORE(TM) i5 CPU, M 560 @2.67 GHz, 4 GB of RAM, and running on Windows 7 Professional (32-bits) as an application machine. All programs were implemented in Java with JavaTM 2 SDK, Standard Edition Version 1.6.22 built in the Netbeans 6.9.1.

B. Data:

The $|\Sigma|$ was 52 letters of English alphabets; 'A' to 'Z' and 'a' to 'z'. Each pattern was randomized with the various lengths of 3 to 20 characters (on average 12 characters). The programs randomized the patterns of 10, 50, 100, 500, 1,000, 5,000, 10,000, 50, 000, 100,000 for testing the data structure construction, and the patterns of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 500, 1,000, 50, 000, 100,000, and 300,000 were also randomized for the searching tests. The texts were randomized from the Σ by the size of 1 KB, 10 KB, 100 KB, 1 MB, 5 MB, and 10 MB. Each experiment was performed 10 times and the average was given.

C. Preprocessing Results:

In preprocessing phase, the inverted lists structure was constructed faster and used smaller space than the earlier Aho-Corasick [1] and SetHorspool in [9] for all cases. In case of pattern numbers more than 1,000; the suffix tree could not create the structure (represented by '-') because the computer was out of heap memory in java while generating the structure. As well as, AC-Trie and RT-Trie were similar to suffix tree when using the pattern number 300,000. These results are illustrated by Table 1 and Table 2, respectively.

#patterns	AC-Trie	RT-Trie	Suffix Tree	IVL
10	0.149	0.110	0.144	0.029
50	0.152	0.224	0.245	0.123
100	0.398	0.423	0.546	0.257
500	0.592	0.732	20.273	0.362
1,000	1.152	1.786	807.374	0.843
5,000	9.543	7.992	-	5.437
10,000	44.321	19.842	-	6.549
50,000	501.432	109.421	-	41.732
100,000	3,491.732	5,648.945	-	840.153
300,000	-	-	-	1,076.432

TABLE I: PROCESSING TIMES FOR CREATING THE DATA STRUCTURES (SECONDS)

TABLE II: MEMORY USAGES OF DATA STRUCTURES (KB)

#patterns	AC-Trie	RT-Trie	Suffix Tree	IVL
10	4.52	4.78	25.18	4.37
50	4.79	4.88	47.79	4.58
100	4.87	4.95	899.55	4.85
500	5.48	5.70	2,721.48	5.07
1,000	5.92	6.15	5,872.87	5.29
5,000	10.91	11.05	-	7.37
10,000	14.76	15.82	-	8.98
50,000	55.82	56.94	-	22.66
100,000	154.10	149.12	-	46.54
300,000	-	-	-	158.91

D. Searching Results:

The searching times were more efficient than the Aho-Corasick and the SetHorspool in the cases of 10, 20, 30, 40, 50, and 60 patterns for all comparable cases. For the number of pattern 70 to 90; the proposed algorithm took less time than the SetHorspool but longer than the Aho-Corasick. Table 3 illustrates the searching times in the second unit. Table 4 shows the larger scale of the experimental results when using the pattern number from 100 to 300,000 patterns. These results showed the new algorithm was faster than the SetHorspool algorithm but slower than the Aho-Corasick algorithm.

Text sizes	#patterns	Aho-	SetHorspool	IVL-MSPM
		Corasick		
1 KB	10	0.0028	0.0197	0.0018
	20	0.0033	0.0457	0.0023
	30	0.0041	0.0570	0.0030
	40	0.0041	0.1787	0.0030
	50	0.0058	0.0900	0.0049
	60	0.0054	0.0966	0.0056
	70	0.0058	0.1091	0.0064
	80	0.0059	0.1097	0.0073
	90	0.0060	0.1962	0.0092
10 KB	10	0.1517	0.2711	0.0138
	20	0.0333	0.7285	0.0211
	30	0.0426	0.9014	0.0283
	40	0.0453	1.3333	0.0376
	50	0.0585	1.4188	0.0493
	60	0.0567	1.5479	0.0608
	70	0.0569	1.5830	0.0647
	80	0.0587	1.5174	0.0728
	90	0.0623	1.6631	0.0650
100 KB	10	0.3042	2.5075	0.0693
	20	0.3434	6.3085	0.2692
	30	0.4558	7.0720	0.3144
	40	0.4742	13.4095	0.3890
	50	0.6446	13.7770	0.5822
	60	0.6699	13.1947	0.6049
	70	0.6503	16.1672	0.6349
	80	0.6654	9.9408	0.8115
	90	0.7230	11.6783	0.9528
1 MB	10	3.2589	24.3629	1.4462
	20	3.6699	69.2808	2.2862
	30	4.5725	81.2985	3.4074
	40	4.7033	128.1007	4.2012
	50	6.1650	116.8468	5.3145
	60	6.3105	135.9463	5.6377
	70	6.2101	142.4764	5.9012
	80	6.7162	140.8990	7.0458
	90	7.3199	154.3418	9.9342
5 MB	10	15.2375	123.5881	7.2263
	20	17.7920	324.1327	12.5403
	30	22.0295	412.2096	12.8643
	40	22.1210	648.2799	20.0707
	50	27.2012	583.1193	26.1849
	60	30.1121	611.7581	27.0252
	70	31.3953	641.1439	33.5463
	80	32.2099	634.0454	34.2042
	90	31.9742	694.5383	45.5356

TABLE III: Searching times (Seconds) when the pattern numbers 10-90 and the text sizes 1 KB to 5 MB

Text sizes	#patterns	Aho-Corasick	SetHorspool	IVL-MSPM
1 KB	100	0.019	0.122	0.060
	500	0.020	0.195	0.183
	1,000	0.037	0.207	0.203
	5,000	0.040	0.177	0.878
	10,000	0.030	0.162	0.943
	50,000	0.035	0.798	5.576
	100,000	0.037	0.802	7.683
	300,000	-	-	8.872
10 KB	100	0.101	1.478	0.301
	500	0.117	1.532	0.732
	1,000	0.125	1.511	1.271
	5,000	0.173	1.572	4.575
	10,000	0.202	1.771	7.986
	50,000	0.549	2.011	10.942
	100,000	1.553	2.431	21.981
	300,000	-	-	29.762
100 KB	100	0.492	12.842	3.671
	500	0.579	16.211	6.912
	1,000	0.599	17.192	8.841
	5,000	1.376	18.444	42.118
	10,000	1.432	18.976	62.127
	50,000	2.902	19.981	79.125
	100,000	4.177	25.211	221.421
	300,000	-	-	244.772
1 MB	100	7.812	130.042	36.912
	500	8.942	149.721	45.414
	1.000	10.332	176.421	81.464
	5,000	20.842	181.123	127.166
	10,000	45.762	188.284	245.593
	50,000	78.421	217.125	788.541
	100.000	102.184	307.190	842.428
	300.000	-	-	942.112
5 MB	100	29.199	759.178	566.315
	500	37.241	799.351	644.124
	1.000	43.442	858.324	755.311
	5.000	140.104	897.148	899.712
	10.000	167.123	907.518	902.814
	50.000	198.452	1.535.523	1.200.314
	100.000	397.671	1.976.434	1.488.619
	300.000	-	-	1.684.971
10 MB	100	71 197	1 578 189	655 175
	500	88.812	1.768.557	751.324
	1.000	95.148	2.487.166	855.152
	5.000	299,182	2,555 190	991.412
	10,000	355 275	2,575,101	1 010 318
	50.000	430.723	2,642,342	1.401.714
	100.000	689 333	2,740 784	1 800 878
	300,000	-	-	2 113 998
	500,000	1	1	

TABLE IV: SEARCHING TIMES (SECONDS) WHEN THE PATTERN NUMBERS 100-300,000 AND THE TEXT SIZES 1 KB TO 10 MB

VI. CONCLUSION

This research article presented a multiple string patterns matching algorithm using inverted lists represented by hashing principle. This algorithm searches by the prefix approach taking (1) O(/P/) time and $O(|\Sigma|+/P/)$ space in preprocessing phase where /P/ is the sum of all pattern lengths in P, and (2) O(n+locc) time for searching where n is the length of input text and *locc* is the number of the matched characters which includes the mismatched time. The experimental results showed that the inverted lists structure is faster to construct and smaller space than the popular structure Trie. The searching time results were faster in the cases of small pattern number.

REFERENCES

- V. Aho and M. J. Corasick, "Efficient string matching: An aid to bibliographic search," Comm. ACM, pp. 333-340, 1975.
- [2] Moffat, and J. Zobel, "Self-Indexing Inverted Files for Fast Text Retrieval," ACM Transactions on Information Systems, Vol. 14, No. 4, pp. 349-379, 1996.
- [3] Commentz-Walter, "A string matching algorithm fast on the average," In Proceedings of the Sixth International Collogium on Automata Languagees and Programming. pp. 118-132, 1979.
- [4] R.S. Boyer. and J.S. Moore, "A fast string searching algorithm," Communications of the ACM. vol. 20, no.10, pp. 762-772, 1977.
- [5] Allauzen and M. Raffinot, "Factor oracle of a set of words," Technical report 99-11, Institute Gaspard Monge, Universitĕde Marne-la-Valle, 1999.
- [6] Monz and M. de Rijke, Inverted Index Construction http://staff.science.uva.nl/~christof/courses/ ir/transparencies/clean-w-05.pdf, February 2002.
- [7] D.E. Knuth, J.H. Morris, V.R. Pratt, "Fast pattern matching in strings," SIAM Journal on Computing, vol. 6, no.1, pp. 323-350, 1997.
- [8] G. Navarro, Improved approximate pattern matching on hypertext, Theoretical Computer Science, 237:455-463, 2000.
- [9] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings, The Press Syndicate of The University of Cambridge. 2002.
- [10] H. HYYRO, K. F. SSON and G. NAVARRO, "Increased Bit-Parallelism for Approximate and Multiple String Matching," ACM Journal of Experimental Algorithms, vol.10, no. 2.6, pp. 1-27, 2005.
- [11] J. J. Fan and K. Y. Su, "An efficient algorithm for match multiple patterns," IEEE Transaction On Knowledge and Data Engineering, vol.5, no. 2, pp.339-351, 1993.
- [12] J. Zobel and A. Moffat, "Inverted Files Versus Signature Files for Text Indexing," ACM Transaction on Database Systems, Vol. 23, No. 4, pp. 453-490, 1998.
- [13] J. Zobel and A. Moffat, "Inverted Files for Text Search Engines," ACM Computing Surveys, vol. 38, no. 2, pp. 1-56, 2006.
- [14] K. M. Karp and M.O. Rabin, "Efficient randomized pattern-matching algorithms," IBM Journal of Research and Development, vol. 31, no. 2, pp. 249-260, 1987.
- [15] L. Gongshen, L. Jianhua and L. Shenghong, "New multi-pattern matching algorithm," Journal of Systems Engineering and Electronics, vol. 17, no. 2, pp.437-442, 2006.
- [16] L. Salmela, J. Tarhio and J. Kytöjoki, "Multipattern string matching with q-grams," ACM Journal of Experimental Algorithmics (JEA), vol. 11, no. 1.1, pp. 1-19, 2006.
- [17] L. Ping, T. Jian-Long, and L. Yan-Bing, "A partition-based efficient algorithm for large scale multiple-string matching," Proceeding of 12th Symposium on String Processing and Information Retrieval (SPIRE'05). Lecture Notes in Computer Science, vol. 3772, Springer-Verlag, Berlin, 2005.
- [18] M.Crochemore, A. Czumaj, L. Gąsieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter, "Fast practical multi-pattern matching," Rapport 93-3, Institute Gaspard Monge, Universityĕde Marne-la-Valle, 1993.

International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online) Vol. 2, Issue 4, pp: (254-264), Month: October - December 2014, Available at: www.researchpublish.com

- [19] M.Crochemore, A. Czumaj, L. Gsieniec, T. Lecroq, W. Plandowski, and W. Rytter, "Fast practical multi-pattern matching," Information Processing Letters, vol. 71, no.3/4, pp. 107-113, 1999.
- [20] M. Raffinot, "On the multi backward dawg matching algorithm (MultiBDM)," In R. Baeza-Yates, editor, Proceedings of the 4th South American Workshop on String Processing, Valparaiso, Chile. Carleton University Press, pp. 149-165, 1997.
- [21] O. R. Zaïane, CMPUT 391: Inverted Index for Information Retrieval, University of Alberta. 2001.
- [22] R. B. Yates and B. R. Neto, Mordern Information Retrieval, The ACM press. A Division of the Association for Computing Machinery, Inc. 1999, pp. 191-227.
- [23] S.Wu and U. Manber, "A fast algorithm for multi-pattern searching," Report tr-94-17, Department of Computer Science, University of Arizona, Tucson, AZ, 1994.
- [24] S. T. Klein, R. Shalom and Y. Kaufman, "Searching for a set of correlated patterns," Journal of Discrete Algorithm, Elsevier, pp. 1-13, 2006.
- [25] Y. D. hong, X. Ke and C. Yong, "An improved Wu-Manber multiple patterns matching algorithm," Performance, Computing, and Communications Conference, 2006. IPCCC 2006. 25th IEEE International 10-12, pp. 675-680, 2006.
- [26] Z. A.A Alqadi, M. Aqel and I. M.M. El Emary, "Multiple skip Multiple pattern matching algorithm (MSMPMA)," IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03, 2007.
- [27] Y. Hu, P.-F. Wang, and K. Hwang, "A Fast Algorithm for Multi-String Matching Based on Automata Optimization," C2010 2nd International Conference on Future Computer and Communication, vol. 2, pp. 379–383, 2010.
- [28] N. Askitis, and J. Zobel, "Redesigning the String Hash Table, Burst Trie, and BST to Exploit Cache," ACM Journal of Experimental Algorithmics, vol. 15 no. 1, article 1.7, pp. 1–61, 2011.
- [29] Belazzougui, "Worst Case Efficient Single and Multiple String Matching in the RAM Model," IWOCA 2010, LNCS 6460, pp. 90–102, 2011.
- [30] T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen, "Online Dictionary Matching with Variable-Length Gaps". SEA 2011, LNCS 6630, pp. 76–87, 2011.
- [31] S. Kuruppu, B. Beresford-Smith, T. Conway, and J Zobel, "Iterative Dictionary Construction for Compression of Large DNA Data Sets," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9 no. 1, pp. 137–149, 2012.
- [32] H. J. Kim, H.-S. Kim, and S. Kang, "A Memory-Efficient Bit-Split Parallel String Matching Using Pattern Dividing for Intrusion Detection Systems," IEEE Transaction on Parallel and Distributed Systems, vol. 22 no. 11, pp. 1904–1911, 2011.
- [33] L. Dai, and Y. Xia, "A Lightweight Multiple String Matching Algorithm," International Conference on Computer Science and Information Technology 2008, pp. 611–615, 2008.
- [34] Khancome and V. Boonjing. Data Structure for Dynamic Pattern. International MultiConference of Engineers and Computer Scientists 2010, HK, 17-19 March 2010, Pp. 399-404.
- [35] Daoudi, S.E. Oautik, A. El Kharraz, K. Idrissi, and D. Aboutajdine, "Vector Approximation based Indexing for High-Dimensional Multimedia Database," Engineering Letter, 16:2, EL_16_2_05, 2008.
- [36] Y. Lu, and D. Lou, "An Algorithm to Find the Optimal Matching in Halin Graphs," IAENG International Journal of Computer Science, 34:2, IJCS_34_2_09, 2007.
- [37] H. Mryajima, M. Fujisai, and N. Shigei, "Quantum Search Algorithms in Analog and Digital Models," IAENG International Journal of Computer Science, 39:2, IJCS_39_2_05, 2012.
- [38] O. Guth, and B. Melichar, "Finite Automata Approach to Computing All Seeds of String with the Smallest Hamming Distance," IAENG International Journal of Computer Science, 36:2, IJCS_36_2_05, 2009.
- [39] Khancome and V. Boonjing, "A new linear-time dynamic dictionary matching algorithm", Computing and Informatics, Vol. 32, 2013, 1001-1027, V 2013-Sep-30.